Copied to
clipboard

G = C56.C23order 448 = 26·7

6th non-split extension by C56 of C23 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q165D14, SD167D14, D28.43D4, D564C22, C56.6C23, C28.25C24, M4(2)⋊13D14, Dic14.43D4, D28.18C23, Dic14.18C23, C7⋊D4.6D4, C8⋊D144C2, D56⋊C24C2, D28.C43C2, (C2×Q8)⋊12D14, (D7×SD16)⋊4C2, C75(D4○SD16), C4.117(D4×D7), (C8×D7)⋊6C22, C7⋊C8.27C23, C8.C224D7, Q8.D142C2, D48D148C2, (Q8×D7)⋊4C22, C8.6(C22×D7), D4⋊D716C22, Q16⋊D73C2, C4○D4.14D14, D14.34(C2×D4), C28.246(C2×D4), C4○D289C22, C56⋊C27C22, C8⋊D77C22, Q8⋊D715C22, (C7×Q16)⋊3C22, (D4×D7).4C22, C22.16(D4×D7), C4.25(C23×D7), D4.8D145C2, D4.D715C22, Dic7.39(C2×D4), Q82D74C22, (Q8×C14)⋊22C22, (C7×SD16)⋊7C22, (C4×D7).16C23, D4.18(C22×D7), C7⋊Q1614C22, (C7×D4).18C23, Q8.18(C22×D7), (C7×Q8).18C23, (C2×C28).116C23, Q8.10D145C2, C14.126(C22×D4), (C7×M4(2))⋊7C22, (C2×D28).182C22, C2.99(C2×D4×D7), (C2×C7⋊C8)⋊19C22, (C2×Q8⋊D7)⋊29C2, (C2×C14).71(C2×D4), (C7×C8.C22)⋊3C2, (C7×C4○D4).27C22, (C2×C4).100(C22×D7), SmallGroup(448,1231)

Series: Derived Chief Lower central Upper central

C1C28 — C56.C23
C1C7C14C28C4×D7C4○D28Q8.10D14 — C56.C23
C7C14C28 — C56.C23
C1C2C2×C4C8.C22

Generators and relations for C56.C23
 G = < a,b,c,d | a56=b2=1, c2=d2=a28, bab=a13, cac-1=a15, dad-1=a43, bc=cb, dbd-1=a28b, cd=dc >

Subgroups: 1388 in 258 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, SD16, SD16, Q16, Q16, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, C8.C22, 2+ 1+4, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, D28, C7⋊D4, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C7×Q8, C22×D7, D4○SD16, C8×D7, C8⋊D7, C56⋊C2, D56, C2×C7⋊C8, D4⋊D7, D4.D7, Q8⋊D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×SD16, C7×Q16, C2×D28, C2×D28, C4○D28, C4○D28, D4×D7, D4×D7, Q8×D7, Q8×D7, Q82D7, Q82D7, Q8×C14, C7×C4○D4, D28.C4, C8⋊D14, D7×SD16, D56⋊C2, Q16⋊D7, Q8.D14, C2×Q8⋊D7, D4.8D14, C7×C8.C22, Q8.10D14, D48D14, C56.C23
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4○SD16, D4×D7, C23×D7, C2×D4×D7, C56.C23

Smallest permutation representation of C56.C23
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 102)(2 59)(3 72)(4 85)(5 98)(6 111)(7 68)(8 81)(9 94)(10 107)(11 64)(12 77)(13 90)(14 103)(15 60)(16 73)(17 86)(18 99)(19 112)(20 69)(21 82)(22 95)(23 108)(24 65)(25 78)(26 91)(27 104)(28 61)(29 74)(30 87)(31 100)(32 57)(33 70)(34 83)(35 96)(36 109)(37 66)(38 79)(39 92)(40 105)(41 62)(42 75)(43 88)(44 101)(45 58)(46 71)(47 84)(48 97)(49 110)(50 67)(51 80)(52 93)(53 106)(54 63)(55 76)(56 89)
(1 67 29 95)(2 82 30 110)(3 97 31 69)(4 112 32 84)(5 71 33 99)(6 86 34 58)(7 101 35 73)(8 60 36 88)(9 75 37 103)(10 90 38 62)(11 105 39 77)(12 64 40 92)(13 79 41 107)(14 94 42 66)(15 109 43 81)(16 68 44 96)(17 83 45 111)(18 98 46 70)(19 57 47 85)(20 72 48 100)(21 87 49 59)(22 102 50 74)(23 61 51 89)(24 76 52 104)(25 91 53 63)(26 106 54 78)(27 65 55 93)(28 80 56 108)
(1 36 29 8)(2 23 30 51)(3 10 31 38)(4 53 32 25)(5 40 33 12)(6 27 34 55)(7 14 35 42)(9 44 37 16)(11 18 39 46)(13 48 41 20)(15 22 43 50)(17 52 45 24)(19 26 47 54)(21 56 49 28)(57 106 85 78)(58 93 86 65)(59 80 87 108)(60 67 88 95)(61 110 89 82)(62 97 90 69)(63 84 91 112)(64 71 92 99)(66 101 94 73)(68 75 96 103)(70 105 98 77)(72 79 100 107)(74 109 102 81)(76 83 104 111)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,102)(2,59)(3,72)(4,85)(5,98)(6,111)(7,68)(8,81)(9,94)(10,107)(11,64)(12,77)(13,90)(14,103)(15,60)(16,73)(17,86)(18,99)(19,112)(20,69)(21,82)(22,95)(23,108)(24,65)(25,78)(26,91)(27,104)(28,61)(29,74)(30,87)(31,100)(32,57)(33,70)(34,83)(35,96)(36,109)(37,66)(38,79)(39,92)(40,105)(41,62)(42,75)(43,88)(44,101)(45,58)(46,71)(47,84)(48,97)(49,110)(50,67)(51,80)(52,93)(53,106)(54,63)(55,76)(56,89), (1,67,29,95)(2,82,30,110)(3,97,31,69)(4,112,32,84)(5,71,33,99)(6,86,34,58)(7,101,35,73)(8,60,36,88)(9,75,37,103)(10,90,38,62)(11,105,39,77)(12,64,40,92)(13,79,41,107)(14,94,42,66)(15,109,43,81)(16,68,44,96)(17,83,45,111)(18,98,46,70)(19,57,47,85)(20,72,48,100)(21,87,49,59)(22,102,50,74)(23,61,51,89)(24,76,52,104)(25,91,53,63)(26,106,54,78)(27,65,55,93)(28,80,56,108), (1,36,29,8)(2,23,30,51)(3,10,31,38)(4,53,32,25)(5,40,33,12)(6,27,34,55)(7,14,35,42)(9,44,37,16)(11,18,39,46)(13,48,41,20)(15,22,43,50)(17,52,45,24)(19,26,47,54)(21,56,49,28)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,102)(2,59)(3,72)(4,85)(5,98)(6,111)(7,68)(8,81)(9,94)(10,107)(11,64)(12,77)(13,90)(14,103)(15,60)(16,73)(17,86)(18,99)(19,112)(20,69)(21,82)(22,95)(23,108)(24,65)(25,78)(26,91)(27,104)(28,61)(29,74)(30,87)(31,100)(32,57)(33,70)(34,83)(35,96)(36,109)(37,66)(38,79)(39,92)(40,105)(41,62)(42,75)(43,88)(44,101)(45,58)(46,71)(47,84)(48,97)(49,110)(50,67)(51,80)(52,93)(53,106)(54,63)(55,76)(56,89), (1,67,29,95)(2,82,30,110)(3,97,31,69)(4,112,32,84)(5,71,33,99)(6,86,34,58)(7,101,35,73)(8,60,36,88)(9,75,37,103)(10,90,38,62)(11,105,39,77)(12,64,40,92)(13,79,41,107)(14,94,42,66)(15,109,43,81)(16,68,44,96)(17,83,45,111)(18,98,46,70)(19,57,47,85)(20,72,48,100)(21,87,49,59)(22,102,50,74)(23,61,51,89)(24,76,52,104)(25,91,53,63)(26,106,54,78)(27,65,55,93)(28,80,56,108), (1,36,29,8)(2,23,30,51)(3,10,31,38)(4,53,32,25)(5,40,33,12)(6,27,34,55)(7,14,35,42)(9,44,37,16)(11,18,39,46)(13,48,41,20)(15,22,43,50)(17,52,45,24)(19,26,47,54)(21,56,49,28)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,102),(2,59),(3,72),(4,85),(5,98),(6,111),(7,68),(8,81),(9,94),(10,107),(11,64),(12,77),(13,90),(14,103),(15,60),(16,73),(17,86),(18,99),(19,112),(20,69),(21,82),(22,95),(23,108),(24,65),(25,78),(26,91),(27,104),(28,61),(29,74),(30,87),(31,100),(32,57),(33,70),(34,83),(35,96),(36,109),(37,66),(38,79),(39,92),(40,105),(41,62),(42,75),(43,88),(44,101),(45,58),(46,71),(47,84),(48,97),(49,110),(50,67),(51,80),(52,93),(53,106),(54,63),(55,76),(56,89)], [(1,67,29,95),(2,82,30,110),(3,97,31,69),(4,112,32,84),(5,71,33,99),(6,86,34,58),(7,101,35,73),(8,60,36,88),(9,75,37,103),(10,90,38,62),(11,105,39,77),(12,64,40,92),(13,79,41,107),(14,94,42,66),(15,109,43,81),(16,68,44,96),(17,83,45,111),(18,98,46,70),(19,57,47,85),(20,72,48,100),(21,87,49,59),(22,102,50,74),(23,61,51,89),(24,76,52,104),(25,91,53,63),(26,106,54,78),(27,65,55,93),(28,80,56,108)], [(1,36,29,8),(2,23,30,51),(3,10,31,38),(4,53,32,25),(5,40,33,12),(6,27,34,55),(7,14,35,42),(9,44,37,16),(11,18,39,46),(13,48,41,20),(15,22,43,50),(17,52,45,24),(19,26,47,54),(21,56,49,28),(57,106,85,78),(58,93,86,65),(59,80,87,108),(60,67,88,95),(61,110,89,82),(62,97,90,69),(63,84,91,112),(64,71,92,99),(66,101,94,73),(68,75,96,103),(70,105,98,77),(72,79,100,107),(74,109,102,81),(76,83,104,111)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G14H14I28A···28F28G···28O56A···56F
order122222222444444447778888814141414141414141428···2828···2856···56
size1124141428282822444141428222441414282224448884···48···88···8

55 irreducible representations

dim1111111111112222222224448
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○SD16D4×D7D4×D7C56.C23
kernelC56.C23D28.C4C8⋊D14D7×SD16D56⋊C2Q16⋊D7Q8.D14C2×Q8⋊D7D4.8D14C7×C8.C22Q8.10D14D48D14Dic14D28C7⋊D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C7C4C22C1
# reps1112222111111123366332333

Matrix representation of C56.C23 in GL6(𝔽113)

801120000
2240000
0010010000
001310000
000013100
00001313
,
8800000
431050000
000013100
0000100100
001001300
00131300
,
100000
010000
000010
000001
00112000
00011200
,
100000
010000
0010010000
001001300
0000100100
000010013

G:=sub<GL(6,GF(113))| [80,2,0,0,0,0,112,24,0,0,0,0,0,0,100,13,0,0,0,0,100,100,0,0,0,0,0,0,13,13,0,0,0,0,100,13],[8,43,0,0,0,0,80,105,0,0,0,0,0,0,0,0,100,13,0,0,0,0,13,13,0,0,13,100,0,0,0,0,100,100,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,100,100,0,0,0,0,100,13,0,0,0,0,0,0,100,100,0,0,0,0,100,13] >;

C56.C23 in GAP, Magma, Sage, TeX

C_{56}.C_2^3
% in TeX

G:=Group("C56.C2^3");
// GroupNames label

G:=SmallGroup(448,1231);
// by ID

G=gap.SmallGroup(448,1231);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,184,570,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^56=b^2=1,c^2=d^2=a^28,b*a*b=a^13,c*a*c^-1=a^15,d*a*d^-1=a^43,b*c=c*b,d*b*d^-1=a^28*b,c*d=d*c>;
// generators/relations

׿
×
𝔽